

Year 3 National Curriculum objectives linked to

addition and subtraction

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers mentally, including: o a three-digit number and ones o a three-digit number and tens o a three-digit number and hundreds
- add and subtract numbers with up to four digits, using formal written methods of columnar addition and subtraction (four digits is Year 4)
- find 10 or 100 more or less than a given number
- find 1 000 more or less than a given number (Year 4)
- estimate the answer to a calculation and use inverse operations to check answers

The following objectives should be planned for lessons where new strategies are being introduced and developed:

• solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.

Year 3 Addition and Subtraction

Strategy & guidance	CPA			
Add and subtract numbers mentally,	It is important to model the mental strategy			
including:	using concrete manipulatives in the first			
 a three-digit number and ones: 	instance and pupils should be able to			
- a unce agre namber and ones,	exemplify their own strategies using			
 a three-digit number and tens; 	manipulatives if required, with numbers			
a a three digit number and hundrede	appropriate to the unit they are working on			
 a diree-digit humber and humbreds 	(3-digit numbers in Units 1 & 4; 4-digit			
Pupils learn that this is an appropriate strategy when	numbers in Unit 13). However, pupils			
they are able to use known and derived number facts	should be encouraged to use known facts to			
or other mental strategies to complete mental	derive answers, rather than relving on			
calculations with accuracy.	counting manipulatives or images.			
To begin with, some pupils will prefer to use this				
strategy only when there is no need to regroup, using	No regrouping			
number facts within 10 and derivations. More	245 1 20 274 50			
confident pupils might choose from a range of mental	345 + 30 274 - 50			
strategies that avoia written algorithms, including (but not avbaustivalu)	1128 + 300 1312 - 300			
(our not exhaustively):				
 known number facts within 20, 	326 + 342 856 - 724			
a demined mumbers for the	1know 4 + 3 - 7			
 aerwea number facts, 				
 'Make ten', 	so 4 tens plus 5			
	tens is equal to 7			
	245 + 20 - 275			
See Year 2 guidance for exemplification of these – the	545 + 50 = 575.			
use of concrete manipulatives other than Dienes	With some regrouping			
blocks is important in reinforcing the use of these				
strategies.	416 + 25 232 - 5			
It is important that pupils are given plenty of	292 + 120 455 246			
(scaffolded) practice at choosing their own strategies	565 T 150 455 - 216			
to complete calculations efficiently and accurately.	611 + 194 130 - 40			
Explicit links need to be made between familiar				
number facts and the calculations that they can be	1482 + 900 2382 - 500			
usejui jor ana pupiis neea to be encouragea to aim for efficiencii.				
greency				

Year 3 Addition and Subtraction

Strategy & guidance	CPA			
Written column method for calculations that	As for the mental strategies, pupils should			
require regrouping with up to 4-digits	be exposed to concrete manipulatives			
Dienes blocks should be used alongside the pictorial representations during direct teaching and can be	modelling the written calculations and should be able to represent their written			
used by pupils both for support and challenge. Place value counters can also be introduced at this stage.	work pictorially or with concrete			
This work revises and reinforces ideas from Key	Again, they should be encouraged to			
Stage 1, including the focus on place value – see Year	calculate with known and derived facts and should not rely on counting images or			
Pinetership of the scheme or mathed should	manipulatives.			
require at least one element of regrouping, so that pupils are clear about when it is most useful to use it. Asking them 'Can you think of a more efficient method?' will challenge them to apply their number sense / number facts to use efficient mental methods where possible.				
As in Year 2, pupils should be given plenty of practice with calculations that require multiple separate instances of regrouping. In Year 3 they become more	=			
familiar with calculations that require 'regrouping to	C + C = 11 as twill have 11 as a which t			
considered use of manipulatives and images,	regroup for 1 ten and 1 one.			
combined with careful use of language.	Personning (including multiple constate			
Pupils should be challenged as to whether this is the most efficient method, considering whether mental	instances)			
methods (such as counting on, using known number facts, round and adjust etc.) may be likelier to	672 + 136 734 - 82			
produce an accurate solution.	468 + 67 831 - 76			
Pupils requiring support might develop their confidence in the written method using numbers that	275 + 386 435 - 188			

'Regrouping to regroup'

204 - 137

1035 - 851

require no regrouping.

Strategy & guidance CPA Find 10, 100 more or less than a given number 142 + 100 = 242As pupils become familiar with numbers up to 1000, place value should be emphasised and comparisons drawn between adding tens, hundreds (and, in the last unit of the Summer term, thousands), including use of concrete manipulatives and appropriate images. After initial teaching, this should be incorporated into transition activities and practised regularly.

Column addition method in more detail

1.

When pupils begin to solve addition of two 2-digit numbers in Mathematics Mastery they are introduced to the column addition method as a way of laying out the addition in columns that represent place value. This is first introduced in Year one and will continue to be used throughout pupils' primary education.

Column addition is a method that builds on pupils understanding of place value and different strategies including knowledge of number bonds within 20 and the 'make ten strategy'. One key misconception pupils may have when solving column addition and subtraction is to consider each digit as separate numbers rather than as representation of the number of tens or ones. Below is a sequence for teaching how to solve addition using the column addition method, firstly without regrouping and secondly with regrouping.

Column addition without regrouping

24 + 13 =			
	tens	ones	
	2	4	
+	1	3	

First add the ones

4 ones + 3 ones = 7 ones

2. Then add the tens

This written method is a very abstract representation of the equation and therefore teachers must make clear links between the written record and using manipulatives that reinforce place-value such as Dienes blocks. This must be planned for when teaching addition both when regrouping is and isn't required.

Column addition with regrouping

24 + 17 =

1. First add the ones

tens ones 2 4 + 1 7 1

4 ones + 7 ones = 11 ones

11 ones = 1 ten and 1 one

2. Then add the tens.

tens

2

1

1

4

2 tens + 1 ten + 1 ten = 4 tens

+

So, 24 + 17 = 41

ones

4

7

1

 tens
 ones

All Saints' CE Primary School Key Stage 2 Calculation Policy 2019- Based on Mathematics Mastery Progression in Calculation document

Column subtraction method in more detail

When pupils begin to solve subtraction of two 2-digit numbers in Mathematics Mastery they are introduced to the column subtraction method as a way of laying out the subtraction in columns that represent place value. This is first introduced in Year one and will continue to be used throughout pupils' primary education. 1 First subtract the ones

Column subtraction is a method that builds on pupils understanding of place value and different strategies including knowledge of number bonds within 20 and the 'make ten strategy'. One key misconception pupils may have when solving column addition and subtraction is to consider each digit as separate numbers rather than as representation of the number of tens or ones. Below is a sequence for teaching how to solve subtraction using the column subtraction method, firstly without regrouping and secondly with regrouping.

Column subtraction without regrouping

	tens	ones
	3	4
-	1	3

2 Then subtract the tens

3 tens - 1 ten = 2 tens

So, 34 - 13 = 21

All Saints' CE Primary School Key Stage 2 Calculation Policy 2019- Based on Mathematics Mastery Progression in Calculation document

ones

X

1. First subtract the ones

But we cannot subtract 7 ones from 4 ones.

So, we regroup the tens in 34.

Regroup the tens in 34.

34 = 3 tens and 4 ones

34 = 2 tens and 14 ones

tens ones

14 ones - 7 ones = 7 ones

2. Then subtract the tens

So, 34 - 17 = 17

when regrouping is and isn't required.

Column subtraction with regrouping

This written method is a very abstract representation of the equation and therefore teachers must make clear links between the written record and using manipulatives that reinforce

place-value such as Dienes blocks. This must be planned for when teaching subtraction both

tens

Year 3 National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- count from 0 in multiples of 4, 8, 50 and 100
- recall and use multiplication and division facts for the 3, 4, 6, and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which *n* objects are connected to *m* objects

Year 3 Multiplication

Year 3 Multiplication

Year 3 Multiplication

Year 3 Division

Year 4 National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers with up to four digits, using the formal written methods of columnar addition and subtraction where appropriate
- find 1 000 more or less than a given number
- estimate and use inverse operations to check answers to a calculation

N.B. There is no explicit reference to mental calculation strategies in the programmes of study for Year 4 in the national curriculum. However, with an overall aim for fluency, appropriate mental strategies should always be considered before resorting to formal written procedures, with the emphasis on pupils making their own choices from an increasingly sophisticated range of strategies.

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why
- solve simple measure and money problems involving fractions and decimals to two decimal places

Year 4 Addition and Subtraction

Year 4 Addition and Subtraction

One

527

58

3

Written column methods for subtraction

Place value counters are a useful manipulative for representing the steps of the formal written method. These should be used alongside the written layout to ensure conceptual understanding and as a tool for explaining.

Year 4 Multiplication

National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- count from 0 in multiples of 6, 7, 9, 25 and 1000
- \bullet recall and use multiplication and division facts for multiplication tables up to 12 \times 12
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- recognise and use factor pairs and commutativity in mental calculations
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths.

The following objectives should be planned for lessons where new strategies are being introduced and developed:

• solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as *n* objects are connected to *m* objects.

Year 4 Multiplication

Year 4 Division

Year 5 and 6 National Curriculum objectives linked to integer addition and subtraction

Year 5 and Year 6 are together because the calculation strategies used are broadly similar, with Year 6 using larger and smaller numbers. Any differences for Year 6 are highlighted in red.

These objectives are explicitly covered through the strategies outlined in this document:

- add and subtract numbers mentally with increasingly large numbers
- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- use negative numbers in context, and calculate intervals across zero
- perform mental calculations, including with mixed operations and large numbers
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign.

Year 5 and 6 Addition and Subtraction

Year 5 and 6 Addition and Subtraction

Near doubles		
	160 + 170 = double 150 + 10 + 20	
Pupils should be able to double		
numbers up to 100 and use this	160 + 170 = double 160 + 10 or	160 + 170 = double 170 - 10
to derive doubles for multiples of		
ten as well as decimal numbers.	2.5 + 2.6 = double 2.5 + 0.1	
These facts can be adjusted to		
calculate near doubles.		

Strategies & Guidance	CPA
Partition both numbers and combine the parts	7230 + 5310 = 12 000 + 500 + 40
Pupils should be secure with this method for numbers up to 10 000, using place value counters or Dienes to show conceptual understanding. If multiple regroupings are required, then pupils should consider using the column method.	200 + 300 = 500

Year 5 and 6 Addition and Subtraction

In Year 5, pupils are expected to be able to use formal written methods to add whole numbers with more than four digits as well as working with numbers with up to three decimal places.

Pupils should think about whether this is the most efficient method, considering if mental methods would be more effective.

Continue to use concrete manipulatives alongside the formal method.

When adding decimal numbers with a different number of decimal places, in order to avoid calculation errors, pupils should be encouraged to insert zeros so that there is a digit in every row. This is not necessary for calculation and these zeros are not place holders as the value of the other digits is not changed by it being placed.

Combine the counters in each column and regroup as needed:

Decimal numbers:

solution.

Year 5 and Year 6 National Curriculum objectives linked to multiplication and division

These objectives are explicitly covered through the strategies outlined in this document:

- multiply and divide whole numbers by 10, 100 and 1000
- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- multiply one-digit numbers with up to two decimal places by whole numbers
- use written division methods in cases where the answer has up to two decimal places

The following objectives should be planned for lessons where new strategies are being introduced and developed:

- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division
- solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts.

Year 5 and 6 Multiplication

Strategies & Guidance	CPA					
Multiply and divide whole	When you n	nultiply by t	en, each p	art is ten	times grea	ter. The ones
numbers and those involving decimals by 10,	become tens, the tens become hundreds, etc.					
100 and 1000	When multi	iplying whol	e number:	s, a zero h	olds a plac	e so that each
Avoid saying that you "add	digit has a value that is ten times greater.					
by ten and instead use the	102.14 x 10 = 1021.4					
language of place holder.	Thousands	Hundreds	Ters	Ones	• tenths	hunchedThs
Use place value counters and charts to visualise and then notice what happens		000 000		1	• •	
to the digits.			10	•	0.01 0.01	
	When you divide by ten, each part is ten times smaller. The					r. The
	place that g	ives it a valu	ue that is t	en times s	maller.	ich digit is in a
	When divid			place belo	lor is no la	meer needed
	so that each	ng multiple n digit has a	s of ten, a value that	t is ten tim	es smaller	nger needed
	E.g. 210 ÷ 1	0 = 21				
	210.3 ÷ 10 = 21.03					
	Hundreds	Tens	One	əs 🖕	tenths	hundrediths
	100 100	10			0.1	
		10 (1				0.01

Year 5 and 6 Multiplication

Year 5 and 6 Multiplication

Year 5 and 6 Division

Year 5 and 6 Division

